

temperature rise  $\Delta T$ :

The temperature rise " $\Delta$ T" is the change in temperature of the entire winding of the motor, including the wire placed deep inside the stator slots, when it is being operated at full load.

For example: if a motor is located in a room with a temperature of  $40^{\circ}$ C, and then is started and operated continuously at the rated power, the winding temperature would rise from  $40^{\circ}$ C to a higher temperature. The difference between its starting

temperature and the final inner elevated temperature, is the  $\Delta T$ . Almost all our motors are designed to offer a temperature rise of B class or even lower, while their insulation system is min in F class.



| Class | amb T (°C) | ∆T (°C) | hot spot<br>allowance (°C) | Tmax (°C) |
|-------|------------|---------|----------------------------|-----------|
| A     | 40         | 60      | 5                          | 105       |
| Ê E   | 40         | 75      | 5                          | 120       |
| В     | 40         | 80      | 5                          | 130       |
| F /   | 40         | 105     | 10                         | 155       |
| H     | 40         | 125     | 15                         | 180       |

example of overload capability (=life bonus) of an F class motor, with B class temperature rise

hot spot allowance
△∆T
□T. amb.

This extra margin gives the motor a "life bonus". As a rule of thumb, insulation life will be doubled for each 10 degrees of unused insulation temperature capability.

The most common method of measuring the temperature rise of a motor is based on the differences between the cold and hot ohmic resistance of the winding.